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Newton's method for finding a stationary point of f: R n R consists of

the iteration

x i+I = x i  7 2f (x d]"I . 7f (xi d

Its main attraction is its second order of convergence. However, it necessitates

computation and inversion of the second order derivatives matrix.

Comnon minimization algorithms approximate the Hessian or its inverse by

first order (i.e. gradient) information. First order information algorithms in

common use, have at best superlinear rate of convergence [cf. 2].

We present a new class of algorithms which use first order information only,

while maintairing quadratic convergence.

At step i of the algorithm, we interpolate f by a suitable interpolating

function T, requiring

T(x i j) (xi~ ) !

(i) j -0,1
(T(xi~) = 7f(xij) , K

and determine xii+ as a solution of the equation LA* "

(2) 
7 T(xi+) 0

We assume that the interpolating function depends on some parameters. We

further assume that the equations (1) for the parameters of T, and equation

(2) for x i+l have solutions for all i, and that the parameters of T depend

on the data continuously through (1). Finally, we assume that f and T have

continuous derivatives of order 5 near the solution.
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We derive the rate of convergence of the algorithm defined by (1) and (Z)

by establishing a difference relation for the errors ei= lixi-x*If. Here 1f1-1

is an arbitrary fixed norm. This difference relation is analogous to the one

obtained in [1] for the one-dimensional case.

n
To this end we define a function *: R * R in terms of which and the

functions f,T we can express the errors of a related one-dimensional interpo-

lation problem.

We assume that a point x* e R which is a solution of

(3) Vf(x*) 0

exists. Let ': R * Rn be a curve in Rn through the points xi j =l,0,-l

and x*, i.e.,

* (t i'J) = x i - j  'J = l ' O ' ' l ,

(4)
*(tk) = x*

where the parameter t is chosen so that

(5) t. j = xij-xII , t* = llx*-x*li 0

We will later Oiscuss the existence of this construction. Note, however,

that the constractic-n of * is a part of the analysis of the properties of the

algorithm, not a part of the algorithm itself.

Now define Q(t)=T(*(t)), 4(t)=f(*(t)). Equations (1) and (4) imply

Qk) (tij) (k) (tij) j,k 0,

which in turn implies [see 3]
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4(4) (T)(4) 1 tt')
12

(6) 4(t) - -(t) = () (t-t) )
j=0

where is some intermediate point. Equation (t) is the basic difference

relation we need (cf. [1]). Differentiating it and setting t= O, we obtain

(7) ti+ B Btit.

If the sequence Bi  converges to a non-zero limit, the relation (7) implies

that the sequence ti  converges to zero if to , t1  are small enough, with rate

of convergence which is given by the unique positive root of the indicial poly-

2
nomial of (7): t -t -2=0, i.e. quadratically [cf. 4].

In order for the sequence Bi  to converge, it is sufficient that Q(5) and

4(5) exist and are continuous, and 4"(0)1O. This would be the case if f has

continuous derivatives of order 5 near the solution, the parameters of T de-

pend continuously on the data, and T has continuous derivatives of order 5 for

the appropriate values of the parameters. Finally, it is evident that the curve

can be chosen so that 4t(0) =4'V 2 f is nonzero, e.g. by choosing

4 3 2
Sa t + bt + c t + t + d k 1,...,n.

k k k k t~ k ,= ..

Note that no line search is needed in this class of algorithms, and that

they may be designed to locate saddle points rather than minimum points.

A useful choice for the interpolating function T seems to be a separable

sum of rational functions of the type discussed in [I].

The results in [I] for the one-dimensional case, can clearly be extended

by the same device to the n-dimensional case. In particular, algorithms based on
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function values only, have rates of convergence between 1.3 A-nd 1.6; the

rate of convergence is independent of the interpolating function, and inverse

interpolation can be utilized for minimization. Similar results hold for the

root-finding problem discussed by Traub [5]. Details of this work will appear

elsewhere.
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